A Gaussian Copula Model for Multivariate Survival Data
نویسندگان
چکیده
منابع مشابه
Spatial Interpolation Using Copula for non-Gaussian Modeling of Rainfall Data
‎One of the most useful tools for handling multivariate distributions of dependent variables in terms of their marginal distribution is a copula function‎. ‎The copula families capture a fair amount of attention due to their applicability and flexibility in describing the non-Gaussian spatial dependent data‎. ‎The particular properties of the spatial copula are rarely ...
متن کاملGaussian Copula Variational Autoencoders for Mixed Data
The variational autoencoder (VAE) is a generative model with continuous latent variables where a pair of probabilistic encoder (bottom-up) and decoder (topdown) is jointly learned by stochastic gradient variational Bayes. We first elaborate Gaussian VAE, approximating the local covariance matrix of the decoder as an outer product of the principal direction at a position determined by a sample d...
متن کاملA latent Gaussian model for multivariate consumption data
We propose a multivariate statistical model for individual consumption of multiple food types, to provide a more objective basis for exposure assessment from chronic consumption. Intake of each type of food is modelled by a latent Gaussian variable, where intake is zero if the latent variable is below a threshold, and otherwise is a monotonically increasing function of the latent variable. Furt...
متن کاملMultivariate Data Clustering for the Gaussian Mixture Model
This paper discusses a soft sample clustering problem for multivariate independent random data satisfying the mixture model of the Gaussian distribution. The theory recommends to estimate the parameters of model by the maximum likelihood method and to use “plug-in” approach for data clustering. Unfortunately, the calculation problem of the maximum likelihood estimate is not completely solved in...
متن کاملDynamic copula models for multivariate high-frequency data in finance
The stylized facts of univariate high-frequency data in finance are well known; see Dacorogna et al. (2001). In Breymann et al. (2003) we analyzed bivariate high frequency forex data as a function of the sampling frequency, however treating the data as iid. In the present paper, using the data from Breymann et al. (2003), we model the dynamics as GARCH type processes and investigate the stylize...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistics in Biosciences
سال: 2010
ISSN: 1867-1764,1867-1772
DOI: 10.1007/s12561-010-9026-x